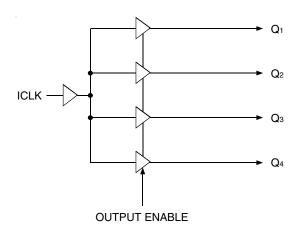
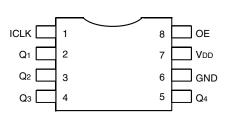
1:4 CLOCK BUFFER

IDT5V551


FEATURES:

- · Advanced, low power CMOS process
- 5V tolerant inputs
- Low skew outputs (<250ps)
- · Input/Output frequency up to 160MHz
- Non-inverting output clock
- · Ideal for networking clocks
- · Operating voltage of 3V
- · Output enable mode tri-states outputs
- · Lead-free packaging available
- · Available in SOIC package


DESCRIPTION:

The 5V551 clock driver is built using advanced CMOS technology. This low skew clock driver offers 1:4 fanout. The fanout from a single input reduces loading on the preceding driver and provides an efficient clock distribution network. The 5V551 offers low capacitance inputs. Typical applications are clock and signal distribution.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SOIC TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
Vdd	Supply Voltage	-0.5 to +4.6	V
VTERM	All Inputs	-0.5 to +7	V
	All Outputs -0.5 to VDD + 0		
TA	Ambient Operating Temp	-40 to +85	°C
Tstg	Storage Temperature	-65 to +150	°C
TJ	Junction Temperature	150	°C
TSOLDER	Soldering Temperature	260	°C

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

PIN DESCRIPTION

Name	Туре	Description	
ICLK	Input	Clock Input, internal pull-up resistor	
Qn	Output	Clock Outputs	
GND	PWR	Connect to Ground	
Vdd	PWR	Connect to 3.3V	
OE	Input	Output Enable. Tri-states outputs when LOW.	
		Internal pull-up resistor.	

EXTERNAL COMPONENTS

A minimum number of external components are required for proper operation. A decoupling capacitor of $0.01\mu F$ should be connected between V_{DD} on pin 7 and GND on pin 6, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than one inch.

RECOMMENDED OPERATING RANGE

Symbol	Description	Min.	Тур.	Max.	Unit
TA	Ambient Operating Temperature	-40	1	+85	°C
VDD	VDD Power Supply Voltage (measured in respect to GND)		_	3.6	V

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{DD} = 3.3V \pm 5\%$

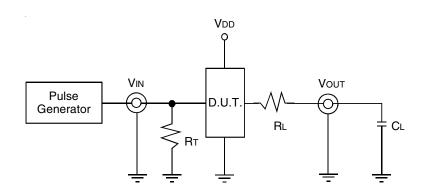
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vdd	Operating Voltage		3.15	_	3.45	V
VIH	Input HIGH Voltage, ICLK ⁽¹⁾		V _{DD} /2 + 0.7	_	_	V
VIL	Input LOW Voltage, ICLK ⁽¹⁾		_	_	V _{DD} /2 – 0.7	V
VIH	Input HIGH Voltage, OE		2	_	_	V
VIL	Input LOW Voltage, OE		_	_	0.8	V
Vон	Output HIGH Voltage	Iон = -25mA	2.4	_	_	V
Vol	Output LOW Voltage	IoL = 25mA	_	_	0.4	V
Vон	Output HIGH Voltage (CMOS)	IOH = -12mA	VDD - 0.4	_	_	V
IDD	Operating Supply Current	No Load, 135MHz	_	18	_	mA
Zo	Nominal Output Impedance		_	20	_	Ω
Rpu	Internal Pull-Up Resistor	ICLK, OE = 0V	_	350	_	kΩ
Cin	Input Capacitance	OE Pin	_	5	_	pF
		ICLK	_	3	_	
los	Short Circuit Current		_	±90	_	mA

NOTE:

1. Nominal switching threshold is VDD/2.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified


 $TA = -40^{\circ}C \text{ to } +85^{\circ}C, VDD = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Fin	Input Frequency		0	_	160	MHz
Four	Output Frequency ⁽¹⁾	15pF load	_	_	160	MHz
tor	Output Clock Rise Time	0.8V to 2V	_	_	1.5	ns
tor	Output Clock Fall Time	2V to 0.8V	_	_	1.5	ns
tpD	Propagation Delay ⁽²⁾	135MHz	2	4	8	ns
tsk(o)	Output to Output Skew ⁽³⁾	Rising edges at VDD/2	_	_	250	ps

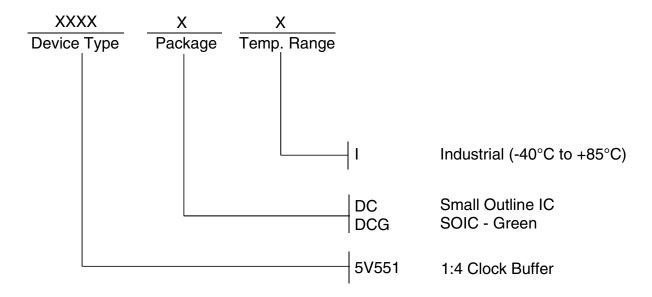
NOTES:

- 1. With external series resistor of 33Ω positioned close to each output pin.
- 2. With rail-to-rail input clock.
- 3. Between any two outputs with equal loading.
- 4. Duty cycle on outputs will match incoming clock duty cycle. Consult IDT for tight duty cycle clock generators.

TEST CIRCUIT

TEST CONDITIONS

Symbol	$V_{DD} = 3.3V \pm 5\%$	Unit	
CL	15	pF	
R⊤	Zout of pulse generator	Ω	
RL	33	Ω	
tr/tr	1 (0V to 3V or 3V to 0V)	ns	


DEFINITIONS:

 $\ensuremath{\text{C}_{\text{L}}}$ = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to the ZouT of the pulse generator.

tr/tr = Rise/Fall time of the input stimulus from the pulse generator.

ORDERING INFORMATION

